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N-Alkyl-4-alkoxy-3-alkynylpyridin-2(1H)-ones readily undergo acid-promoted 5-endo-heteroannulation
to furopyridinium intermediates that are dealkylated in situ to provide the corresponding furo[2,3-b]-
pyridin-4(7H)-ones. The same strategy applies to the formation of furo[2,3-b]quinolin-4(9H)-ones. In
the case of Me3Si-substituted alkynes, hydration of the triple bond was observed.

� 2008 Elsevier Ltd. All rights reserved.
As part of a drug development programme, we recently started 2
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Scheme 1.
exploring the reactivity of 4-alkoxy-3-alkynyl-2-pyridones (I) as
potential precursors of the furo[2,3-b]pyridin-4-one ring system
(II), a key-structural subunit prevalent in a number of natural
products and structural analogues associated with interesting
biological activities.1 We have already successfully developed
organopalladium- as well as iodonium-promoted heteroannulation
processes as two complementary synthetic entries to 3-substituted
furopyridones.2 These one-pot transformations have been demon-
strated to proceed via cationic cyclisation with subsequent in situ
cleavage of the pyridonyl alkyl ether via nucleophilic displacement
by a halide anion (Scheme 1).

In an effort to broaden the scope of this class of reactions, we set
out to develop an alternative cyclisation process that may provide
access to the analogous 3-unsubstituted furan derivatives (II with
E = H), and have therefore turned our attention to the possible use
of Brønsted acids as possible promoters of the electrophilic cyclisa-
tion/dealkylation reactions.3

Preliminary experiments conducted with 2-pyridone 1a as
model substrate indicated that acetic acid would effectively pro-
mote the desired transformation when used as solvent at refluxing
temperature. It was also confirmed that the cyclisation process
would generate 4-alkoxypyridinium salts as cationic intermediates
and that benzyl, as the 4-oxy-2-pyridone protecting group, would
ll rights reserved.
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show better acid lability compared to methyl, and would therefore
ensure efficient collapse of the pyridiniums to the desired pyri-
dones. Indeed, when stirred in refluxing AcOH for 5 h, 4-meth-
oxy-2-pyridone 1a was totally converted to a cyclisation product
leaving the methoxy group untouched, the structure of which
was tentatively assigned to furopyridinium 2a (Scheme 2).4 Pleas-
ingly, demethylation of 2a could be observed when heating was
prolonged. However, the process proved sluggish providing the de-
sired furopyridone 3a in only 35% isolated yield (50% conversion
from 2a) after 36 h reaction time.5 In contrast, 4-benzyloxypyri-
done 1b was found to undergo much faster cyclisation–dealkyla-
tion compared to 1a as only 3 h was needed to achieve 70% yield
of 3a.

Although the spectroscopic data supported the formation of
furo[2,3-b]pyridin-4(7H)-one 3a, the structure was unambiguously
secured by an X-ray crystal structure analysis (Fig. 1).6



Figure 1. ORTEP representation of 3a.
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Table 1
Reaction of 3-alkynyl-2-pyridones in AcOHa
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Table 1 (continued)
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a Reactions performed overnight in refluxing AcOH ensuring complete
conversion.

b Isolated yields (single runs).
c Yield determined after 3 h reaction time (see text).
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The generality of the cyclisation process was then explored with
other N,O-dialkylated pyridones (Table 1). The results summarized
in Table 1 demonstrate that AcOH was efficient in most cases, and a
variety of 2-substituted furopyridones were obtained under the
standard reaction conditions.7 Interestingly, aryl- as well as al-
kyl-substituted acetylenes participated equally well in the cyclisa-
tion process. However, trimethylsilyl acetylenic compound 1f
showed a different behaviour, furnishing 3-acetyl-2-pyridone 48

as the only reaction product (65% isolated yield) upon concomitant
desilylation and regioselective hydration of the alkyne. It is likely
that the trimethylsilyl group was initially cleaved from the alkyne,
which then underwent acidic hydrolysis to the corresponding
3-acetylpyridone.9,10 We also examined the cyclisation of the ben-
zo-homologated substrate 1h11 that might open access to analo-
gous derivatives of the linearly fused furoquinoline alkaloids.12

To our satisfaction, 1h afforded the desired furoquinolinone 3f12c

under identical reaction conditions in a good 77% isolated yield.
A plausible mechanism for the cyclisation–debenzylation pro-

cess is depicted in Scheme 3. The alkynylpyridone is activated by
AcOH (intermediate A) and undergoes intramolecular nucleophilic
attack by the carbonyl oxygen of the amide group to form the furo-
pyridinium intermediate B. The latter would undergo cleavage of
the O-benzyl group by action of the counteranion resulting in the
formation of the neutral furopyridone.

In conclusion, we have enlarged the scope of our electrophilic
heteroannulation processes of N-alkylated-3-alkynyl-2-pyridones
to include access to 3-unsubstituted furo[2,3-b]pyridin-4(7H)-
ones. The procedure is very simple only requiring heating of the
2-pyridones in acetic acid in the absence of any catalyst.
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